基于微波信號測量的雷達(dá)定位技術(shù)已經(jīng)在自動(dòng)駕駛、智能生產(chǎn)、健康檢測、地質(zhì)勘探等活動(dòng)中得到廣泛應(yīng)用。據(jù)中國科學(xué)技術(shù)大學(xué)官網(wǎng),該校郭光燦院士以及孫方穩(wěn)教授的團(tuán)隊(duì)在實(shí)用化量子傳感研究中取得重要進(jìn)展。
該研究組利用微納量子傳感與電磁場在深亞波長的局域增強(qiáng),研究微波信號的探測與無線電測距,實(shí)現(xiàn) 10-4波長精度的定位。該成果已于 3 月 9 日發(fā)表在國際知名期刊《自然 通訊》上(IT之家附論文 DOI 鏈接)。
與傳統(tǒng)雷達(dá)系統(tǒng)相比,該量子測量方法無需檢測端的放大器等有源器件,降低了電子噪聲等因素對測量極限的影響。通過后續(xù)的研究,將可以進(jìn)一步提高基于固態(tài)自旋量子傳感的無線電定位精度、采樣率等指標(biāo),發(fā)展實(shí)用化固態(tài)量子雷達(dá)定位技術(shù),超過現(xiàn)有雷達(dá)的性能水平。
官方表示,孫方穩(wěn)研究組發(fā)展了電荷態(tài)耗盡納米成像方法,實(shí)現(xiàn)基于金剛石氮-空位色心的超衍射極限分辨力電磁場矢量傳感與成像,并利用超分辨量子傳感探索了電磁場在 10-6波長空間內(nèi)局域增強(qiáng)的現(xiàn)象。
據(jù)介紹,該方法將自由空間弱信號的探測轉(zhuǎn)換為對納米尺度下電磁場與固態(tài)自旋相互作用的探測,提高了固態(tài)量子傳感器的微波信號測量靈敏度 3-4 個(gè)量級。
為了進(jìn)一步利用高靈敏度的微波探測實(shí)現(xiàn)高精度微波定位,研究組搭建了基于金剛石量子傳感器的微波干涉測量裝置,通過固態(tài)自旋探測物體反射微波信號與參考信號的干涉結(jié)果,得到物體反射微波信號的相位以及物體的位置信息。同時(shí),研究組利用固態(tài)自旋量子探針與微波光子多次相干相互作用,實(shí)現(xiàn)了量子增強(qiáng)的位置測量精度,達(dá)到 10 微米水平(約波長的萬分之一)。